1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
use r_derive::*;
use crate::callable::core::*;
use crate::object::types::*;
use crate::object::*;
use crate::{formals, lang::*};
/// Concatenate Values
///
/// Construct a vector of values. Heterogeneous values will be coerced
/// into a common type.
///
/// <div class="warning">
///
/// Note that `c()` is provided for familiarity, but there are better,
/// more explicit ways of constructing homogeneous vectors using the
/// `[...]` and `(...,)` syntax.
///
/// </div>
///
/// # In-Language
///
/// ## Usage
///
/// ```custom,{class=r}
/// c(...)
/// ```
///
/// ## Arguments
///
/// `...`: Arguments to collect into a `vector`.
///
/// ## Examples
///
/// ```custom,{class=r-repl}
/// c(false, 1, "two")
/// ```
///
#[doc(alias = "c")]
#[builtin(sym = "c")]
#[derive(Debug, Clone, PartialEq)]
pub struct PrimitiveC;
formals!(PrimitiveC, "(...)");
impl Callable for PrimitiveC {
fn call(&self, args: ExprList, stack: &mut CallStack) -> EvalResult {
// this can be cleaned up quite a bit, but I just need it working with
// more types for now to test vectorized operators using different types
let Obj::List(vals) = stack.eval_list_eager(args)? else {
unreachable!()
};
// lets first see what we're aiming to build.
let ty: u8 = vals
.pairs_ref()
.iter()
.map(|(_, v)| match v {
Obj::Null => 0,
Obj::Vector(_) => 1,
_ => 2,
})
.fold(0, std::cmp::max);
// if the output will have names
// either an argument was passed via a name or it has names itself
let named = vals.pairs_ref().iter().any(|(n, o)| {
if matches!(n, OptionNA::Some(_)) {
return true;
}
match o {
Obj::Vector(v) => v.is_named(),
Obj::List(l) => l.is_named(),
_ => false,
}
});
// most complex type was NULL
if ty == 0 {
return Ok(Obj::Null);
}
// most complex type was List
if ty == 2 {
// TODO: We should use size hints here.
let mut list = List::new();
for (name1, value1) in vals.iter_pairs() {
match value1 {
Obj::List(x) => {
for (name2, value2) in x.iter_pairs() {
let name = match (&name1, name2) {
(OptionNA::Some(x1), OptionNA::Some(x2)) => {
OptionNA::Some(format!("{x1}.{x2}"))
}
(OptionNA::NA, OptionNA::Some(x2)) => OptionNA::Some(x2),
(OptionNA::Some(_), OptionNA::NA) => name1.clone(),
(OptionNA::NA, OptionNA::NA) => OptionNA::NA,
};
list.push_named(name, value2)
}
}
_ => list.push_named(name1, value1),
}
}
return Ok(Obj::List(list));
}
let names: Option<Vec<Character>> = if named {
let mut pairs = vals.pairs_ref();
let nms = pairs.iter().flat_map(|(name, obj)| {
let maybe_prefix = name.clone().as_option().clone();
if let Obj::Vector(v) = obj {
let maybe_names_iter = v.iter_names();
let x: Vec<Character> = match (maybe_prefix, maybe_names_iter) {
(None, None) => std::iter::repeat(Character::NA).take(v.len()).collect(),
(Some(prefix), None) => std::iter::repeat(Character::Some(prefix.clone()))
.take(v.len())
.collect(),
(None, Some(names_iter)) => names_iter.collect(),
(Some(prefix), Some(names_iter)) => names_iter
.map(|maybe_name| {
if let OptionNA::Some(name) = maybe_name {
Character::Some(format!("{}.{}", prefix, name))
} else {
Character::Some(prefix.clone())
}
})
.collect(),
};
x
} else {
unreachable!("if we are not building a list, all elements are vectors")
}
});
Some(nms.collect())
} else {
None
};
// otherwise, try to collapse vectors into same type
let ret = vals
.values_ref()
.iter()
.map(|r| match r {
Obj::Vector(Vector::Logical(_)) => Vector::from(Vec::<Logical>::new()),
Obj::Vector(Vector::Integer(_)) => Vector::from(Vec::<Integer>::new()),
Obj::Vector(Vector::Double(_)) => Vector::from(Vec::<Double>::new()),
Obj::Vector(Vector::Character(_)) => Vector::from(Vec::<Character>::new()),
_ => unreachable!(),
})
.fold(Vector::from(Vec::<Logical>::new()), |l, r| match (l, r) {
(v @ Vector::Character(_), _) => v,
(_, v @ Vector::Character(_)) => v,
(v @ Vector::Double(_), _) => v,
(_, v @ Vector::Double(_)) => v,
(v @ Vector::Integer(_), _) => v,
(_, v @ Vector::Integer(_)) => v,
(v @ Vector::Logical(_), _) => v,
});
// consume values and merge into a new collection
let v = match ret {
Vector::Character(_) => Vector::from(
Vec::<OptionNA<String>>::new()
.into_iter()
.chain(vals.iter_values().flat_map(|i| match i.as_character() {
Ok(Obj::Vector(Vector::Character(v))) => v.iter_values(),
_ => unreachable!(),
}))
.collect::<Vec<Character>>(),
),
Vector::Double(_) => Vector::from(
Vec::<OptionNA<f64>>::new()
.into_iter()
.chain(
vals.iter_values()
.flat_map(|i| match i.clone().as_double() {
Ok(Obj::Vector(Vector::Double(v))) => v.iter_values(),
_ => unreachable!(),
}),
)
.collect::<Vec<Double>>(),
),
Vector::Integer(_) => Vector::from(
Vec::<OptionNA<i32>>::new()
.into_iter()
.chain(
vals.iter_values()
.flat_map(|i| match i.clone().as_integer() {
Ok(Obj::Vector(Vector::Integer(v))) => v.iter_values(),
_ => unreachable!(),
}),
)
.collect::<Vec<Integer>>(),
),
Vector::Logical(_) => Vector::from(
Vec::<OptionNA<bool>>::new()
.into_iter()
.chain(
vals.iter_values()
.flat_map(|i| match i.clone().as_logical() {
Ok(Obj::Vector(Vector::Logical(v))) => v.iter_values(),
_ => unreachable!(),
}),
)
.collect::<Vec<Logical>>(),
),
};
if let Some(names) = names {
Ok(Obj::Vector(v.set_names(names.into())))
} else {
Ok(Obj::Vector(v))
}
}
}
#[cfg(test)]
mod tests {
use crate::{r, r_expect};
#[test]
fn list_empty() {
assert_eq!(r!(list()), r!(c(list())))
}
#[test]
fn list_list() {
r_expect! {{"
l = c(list(1), list(2))
l[[1]] == 1 & l[[2]] == 2
"}}
}
#[test]
fn list_vec() {
r_expect! {{"
l = c(list(1), 2:3)
l[[1]] == 1 & l[[2]][1] == 2 & l[[2]][2] == 3
"}}
}
#[test]
fn list_fn() {
r_expect! {{"
l = c(list(1), fn() 2)
l[[1]] == 1 & l[[2]]() == 2
"}}
}
#[test]
fn function() {
r_expect! {{"
l = c(fn() 2)
l[[1]]() == 2
"}}
}
#[test]
fn list_names_outer() {
r_expect! {{"
c(a = list(1))$a == 1
"}}
}
#[test]
fn list_names_inner() {
r_expect! {{"
c(list(a = 1))$a == 1
"}}
}
#[test]
fn list_names_both() {
r_expect! {{"
c(a = list(b = 1))$a.b == 1
"}}
}
#[test]
fn vector_names() {
r_expect! {{r#"
x = [a = 1]
names(x) == "a"
"#}}
}
}