1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
use r_derive::builtin;
use rand_distr::{Distribution, Normal};

use crate::callable::core::*;
use crate::error::Error;
use crate::formals;
use crate::lang::*;
use crate::object::*;

/// Normally Distributed Random Number Generation
///
/// Create a vector of normally distributed random numbers.
///
/// # In-Language
///
/// ## Usage
///
/// ```custom,{class=r}
/// rnorm(n = 1, mean = 0, std = 1)
/// ```
///
/// ## Arguments
///
/// * `n`: The number of values to generate
/// * `mean`,`std`: Characteristics of the normal distribution to sample.
///
/// ## Examples
///
/// Produce a vector of values between `0` and `1`:
///
/// ```custom,{class=r-repl}
/// rnorm(3)
/// ```
///
/// Modify range with a minimum and maximum:
///
/// ```custom,{class=r-repl}
/// rnorm(10, mean = 10, std = 5)
/// ```
///
#[doc(alias = "rnorm")]
#[builtin(sym = "rnorm")]
#[derive(Debug, Clone, PartialEq)]
pub struct PrimitiveRnorm;

formals!(PrimitiveRnorm, "(n = 1, mean = 0, std = 1)");

impl Callable for PrimitiveRnorm {
    fn call(&self, args: ExprList, stack: &mut CallStack) -> EvalResult {
        use Error::ArgumentInvalid;
        let (vals, _) = self.match_arg_exprs(args, stack)?;
        let vals = force_promises(vals, stack)?;
        let mut vals = Obj::List(List::from(vals));

        let n: i32 = vals.try_get_named("n")?.try_into()?;
        let mean: Vec<f64> = vals.try_get_named("mean")?.try_into()?;
        let std: Vec<f64> = vals.try_get_named("std")?.try_into()?;
        let len = std::cmp::max(mean.len(), std.len());
        let mut rng = rand::thread_rng();

        // TODO: perhaps these branches can be unified by creating a
        // run-length-encoding of the iterator?

        // special case when both min and max are length 1, sampling
        // all random numbers at once from the same distribution
        if len == 1 {
            let mean = mean
                .first()
                .map_or(ArgumentInvalid(String::from("mean")).into(), Ok)?;
            let std = std
                .first()
                .map_or(ArgumentInvalid(String::from("std")).into(), Ok)?;

            let normal = Normal::new(*mean, *std).unwrap();

            Ok(Obj::Vector(Vector::from(
                (1..=n)
                    .map(|_| normal.sample(&mut rng))
                    .collect::<Vec<f64>>(),
            )))

        // otherwise we need to zip through mins and maxes to get distributions
        } else {
            Ok(Obj::Vector(Vector::from(
                mean.into_iter()
                    .cycle()
                    .zip(std.into_iter().cycle())
                    .take(len)
                    .map(|(mean, std)| Normal::new(mean, std).unwrap().sample(&mut rng))
                    .collect::<Vec<f64>>(),
            )))
        }
    }
}